Insect Pest Management Update from 2021

Brett R. Blaauw Southeast Regional Fruit & Vegetable Conference Savannah, GA 2022

Outline

- Things to look forward to in 2022
 - New projects
 - Chlorpyrifos ban
- San Jose scale
 - Mating disruption
 - Within season, on farm oil sprays
- Oriental fruit moth
 - Potential new rotational products

Things to look forward to in 2022

Things to look forward to in 2022

- New spray trial projects
 - Borer management
 - Thrips management
 - Heavier oils for scale
- Chlorpyrifos ban

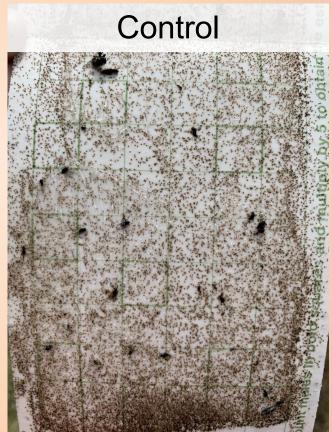
Chlorpyrifos ban

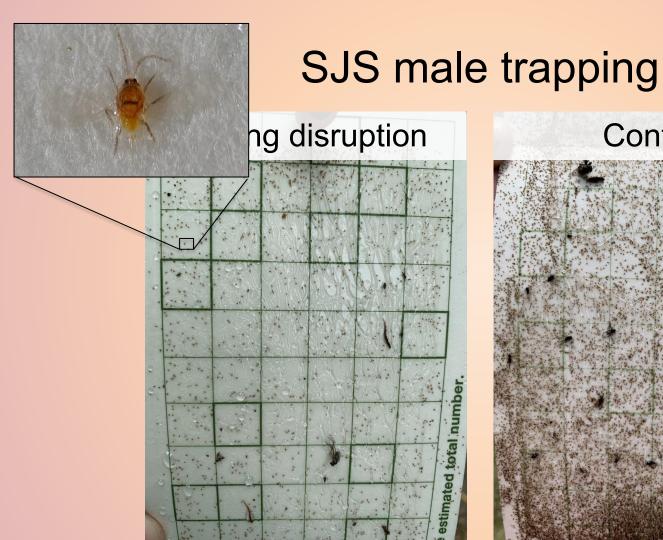
- Starting March 1, 2022 all tolerances will be revoked
 - Registered food uses will be canceled
- Change in management practices
 - Borers
 - Asana XL (esfenvalerate), Rimon (novaluron), & Altacor (chlorantraniliprole)
 - Mating disruption
 - Entomopathogenic nematodes
 - Scale
 - Insect growth regulators like Centaur, Esteem, & Movento
 - Other options?
- 2022 peach guides have been updated

San Jose scale (SJS)

SJS mating disruption

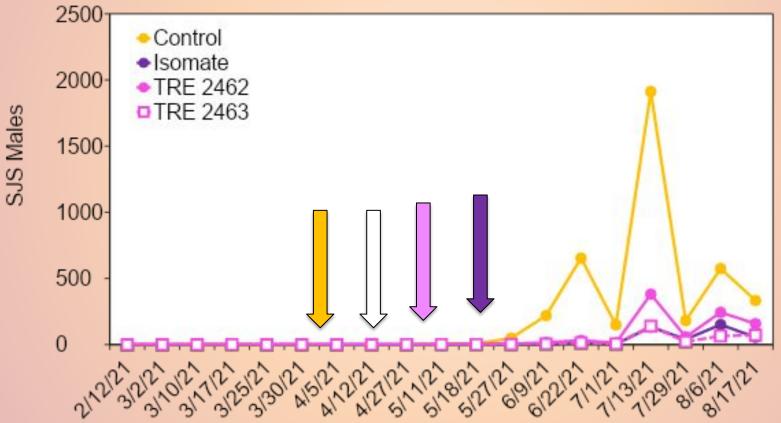
Mating disruption trial design - 2021


Trial design:


- ¹/₄ acre blocks, 3 reps
- 3 experimental formulations evaluated
- Monitored adult males and crawlers through season

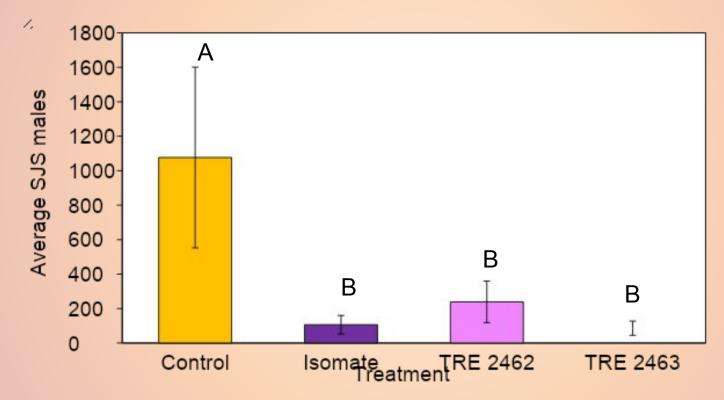
Treatment	Manufacturer	Rate/acre	Active Ingredient	Date deployed	
UTC	x	X	X	Х	
Isomate	CBC America	200	Pheromone	Feb. 18	
TRE 2462	Trécé	200	Pheromone	Feb. 12	
TRE 2463	Trécé	100	Pheromone	Feb. 12	

SJS male trapping


Control

total

stimated



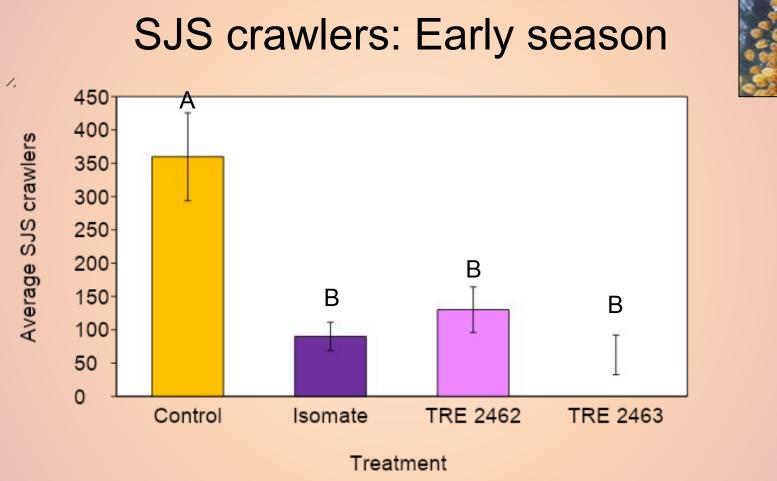
SJS males: Seasonal activity

SJS Males: Season average

ANOVA F_{3,224} = 3.02, *P* = 0.031; Student's t

SJS crawler monitoring

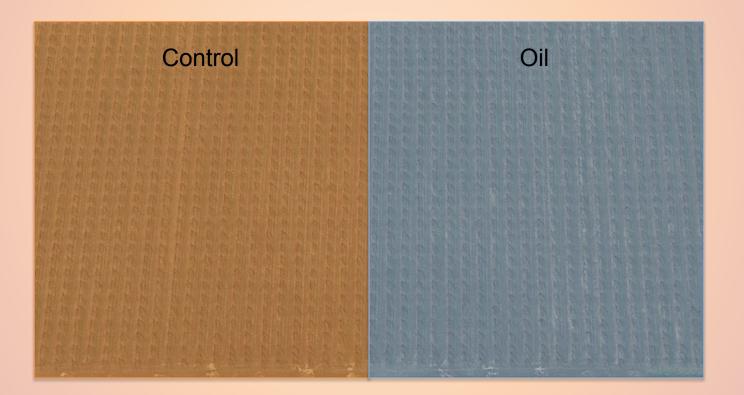
SJS crawler monitoring

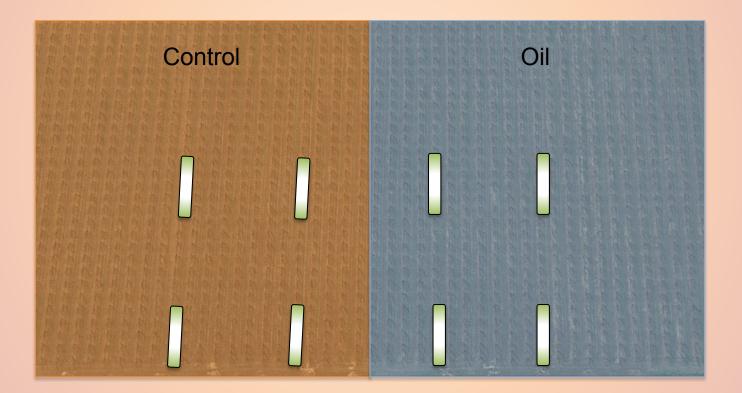


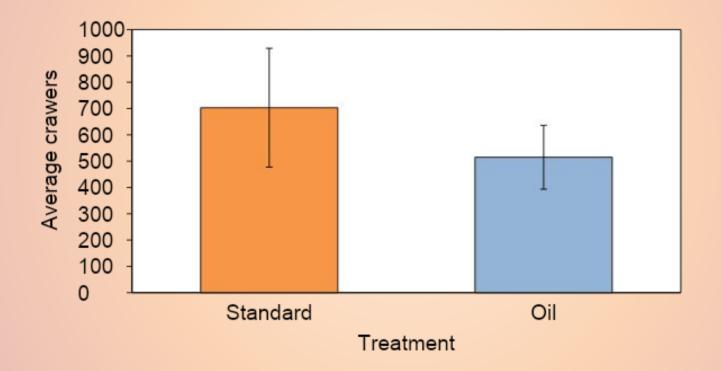
SJS crawler monitoring

ANOVA F_{3,172} = 10.99, *P* < 0.001; Student's t

Within season, on farm oil spray trial - 2021


- Single orchard, Summer gold variety
- 0.2% Damoil added to standard spray program
- Airblast application
 - 5 weekly applications starting May 21
- Monitored SJS crawlers


★ Note: Sulfur does not mix well with oil



SJS crawler abundance

No phytotoxic issues!

Control

SJS Summary

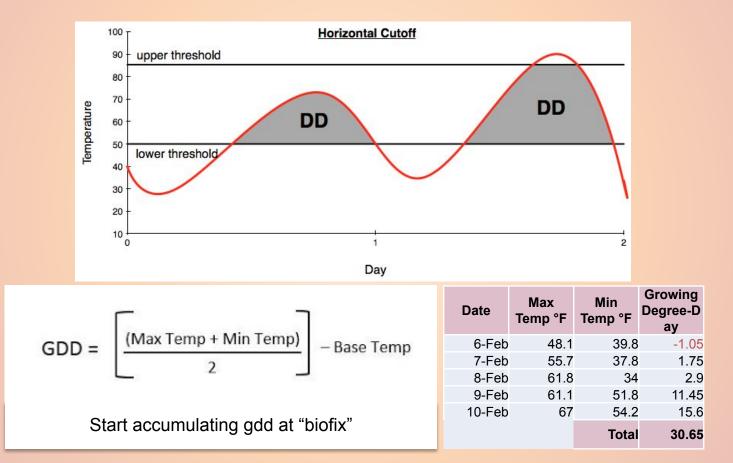
- Dormant oil applications are critical
 - Coverage is still key

 timing and volume
 - Additional insecticides can improve management
 - Eg. Esteem, Centaur, Venerate
- Mating disruption is a promising alternative
 - Seems to work best in low to mid-range pressure
 - Still in experimental stage
- Within season low-rate oil sprays have potential
 - May take several years to see impact
 - Determine compatibility with captan

Oriental fruit moth (OFM)

Oriental fruit moth (OFM)

- Generally, more of an issue in the upstate
- Adults emerge and mate shortly before bloom
 - Eggs hatch by mid- to late-April
 - Early-season insecticides for PC <u>normally</u> provide excellent OFM control
 - Cultivars ripening after June are more susceptible
- Management timing most effective based on growing degree-days and/or trapping


OFM mating disruption

- Mating disruption is an effective alternative

 Several brands to choose from
- Works best on larger acreage (>5 ac)
 - Total orchard acreage must be 'disrupted'
 - Deployed early spring prior to male flight
- A transition season may be needed
 - Combination of insecticide and mating disruption
- Monitor for flagging damage
 - Examine 20 shoots on 20 trees per block
 - Treat with insecticide if 1% or more of the shoots are infested or if fruit damage is detected

Calculating degree-days

OFM chemical management

- Monitor with a pheromone trap to stay on top of problem
 - 1 trap per 10 acres
 - Treat if 10 moths/trap/week after 3rd cover
- Follow degree-day model
 - In the peach management guide
- Several good insecticides at our disposal
 - Insecticide rotation is key

Degree-day timing

Page 55 in peach management guide

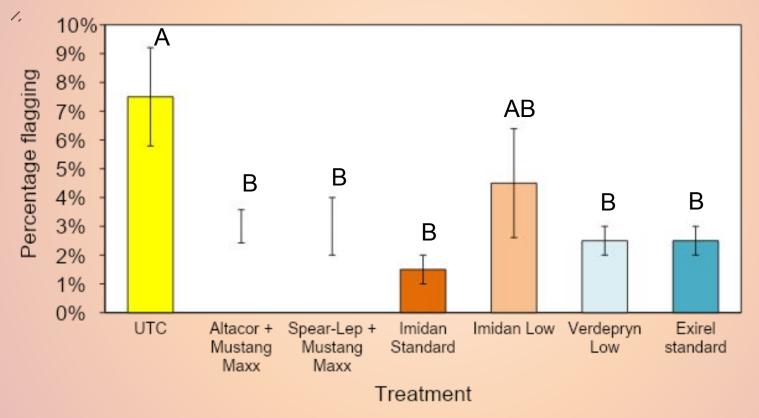
	RELATIONSHIP BETWEEN DEGREE-DAY ACCUMULATIONS AFTER BIOFIX AND BIOLOGICAL EVENTS OF ORIENTAL FRUIT MOTH (45°F LOWER BASE, 90°F UPPER BASE)*				
•	Cumulative degree-days	e degree-days Biological Event			
	175	first adult emergence			
	250	first eggs laid			
	325 to 425	peak adult emergence			
	525	peak egg laying			
	950	first emergence of second generation adults			
	1,100	first eggs laid by second generation			
	1,300 to 1,425	peak emergence of second generation adults peak egg laying by second generation adults			
	1,500				
	1,900	first emergence of third generation adults			
	2,200 to 2,450	peak emergence of third generation adults			
	2,500	peak egg laying by third generation adults			
	* Modified from Michigan State University Fact Sheet				

*first sustained catch is defined as the Biofix for OFM

Generally recommended compounds

Trade Name	Active Ingredient	Effectiveness	MOA	IRAC
Imidan 70W	Phosmet	++++ (pH < 6.5)	Organophosphate	1B
Asana 0.66EC	Esfenvalerate	++++	++++ Pyrethroid	
Baythroid XL 1EC	Beta cyfluthrin	++++ Pyrethroid		3A
Mustang Maxx	Zeta cypermethrin	++++	Pyrethroid	3A
Tombstone 2EC	Cyfluthrin	++++	Pyrethroid	3A
Proaxis 0.5EC	Gamma cyhalothrin	++++	Pyrethroid	3A
Warrior 1EC	Lambda cyhalothrin	++++	Pyrethroid	3A
Entrust	Spinosad	++	Spinosyn (organic)	5
Delegate WG	Spinetoram	+++	Spinosyn	5
Avaunt	Indoxacarb	++++	Oxadiazine	22A
Voliam Flexi	Thiamethoxam + Chlorantraniliprole	++++	Neonicotinoid + Diamide	4A + 28

Potential rotational compounds trial - 2021

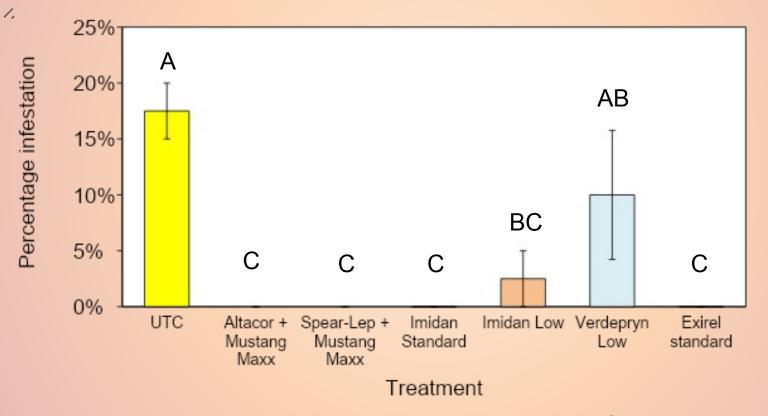

Treatment	Trade Name	Active Ingredient	Rate/acre	MOA	IRAC	Apps*	
1	Altacor	Chlorantraniliprole	4.5 oz	Diamide	28	x2	Rotated
	Mustang Maxx	Zeta cypermethrin	4 fl oz	Pyrethroid	3A	x2	
2	Spear-Lep	GS-omega/ kappa-Hxtx-Hv1a	1.5 pt	Hv1a peptide	32	x2	Rotated
-	Mustang Maxx	Zeta cypermethrin	4 fl oz	Pyrethroid	ЗA	x2	
3	Imidan 70W (standard)	Phosmet	3 lb (pH < 6.5)	Organophosphate	1B	x4	
4	lmidan 70W (low)	Phosmet	1.5 lb (pH < 6.5)	Organophosphate	1B	x4	
5	Verdepryn (low)	Cyclaniliprole	8.2 fl oz	Diamide	28	x4	
6	Exirel	Cyantraniliprole	13.5 fl oz	Diamide	28	x4	

*Started April 9 and applied every two weeks

Flagging

Flagging

ANOVA $F_{6,21}$ = 3.19, *P* = 0.022; Student's t


Fruit infestation

Fruit infestation

Fruit infestation

ANOVA F_{6,21} = 6.01, *P* = 0.001; Student's t

OFM summary

- Mating disruption can be an effective option
- Monitoring can help stay on top of problem
- Several good insecticides at our disposal
 - Rotation is important:
 - Spear-Lep
 - Diamides: Altacor, Exirel, Verdepryn
 - Imidan
- Timing is crucial
 - Follow degree-day model in peach guide

Management resources for 2022

2022 Spray guides

 Print and online

- UGA Peach Blog
 - https://site.extension.uga.edu/peaches/

MyIPM smartphone app

Thanks!

- UGA Peach Entomology Lab
- Grower cooperators
- Funding
 - Industry support
 - Southern SARE
 - Hatch Funds
 - Georgia Peach Commission
 - South Carolina Peach Council

bblaauw@uga.edu